Trigonometry- Sin, Cos, Tan, Cot. A circle centered at the origin of the coordinate system and with a radius of 1 is known as a unit circle . If P is a point from the circle and A is the angle between PO and x axis then: The x -coordinate of P is called the cosine of A and is denoted by cos A ; The y -coordinate of P is called the sine of A
/ Fórmulas / Matemática / 1. Relações trigonométricas fundamentais $\mathrm{sen}^{2} a + \cos^{2} a = 1$ $tg a = \frac{sen a}{\cos a}$ $cotg a = \frac{\cos a }{sen a}$ $sec a = \frac{1}{\cos a}$ $cossec a = \frac{1}{sen a}$ 2. Relações trigonométricas derivadas $tg^{2} a + 1 = sec^{2} a$ $cotg^{2} a +1 = cossec^{2} a$ 3. Seno da soma - Cosseno da soma - Tangente da soma $sena+b = sena \ . \cos b + senb \ . \cosa$ $\cos a+b = \cos a \ . \cos b - sena \ . senb$ $tga+b = \frac{tga + tgb}{1-tga \ . tgb}$ 4. Seno da diferença - Cosseno da diferença - Tangente da diferença $sena-b = sena \ . \cos b - senb \ . \cos a$ $\cos a-b = \cos a \ . \cos b + sena \ . senb$ $tga-b = \frac{tga - tgb}{1+tga \ . tgb}$ 5. Soma de senos - Soma de cossenos - Soma de tangentes $sen a + sen b = 2 sen \left \frac{a+b}{2} \right \ . \cos \left \frac{a-b}{2} \right$ $ \cos a+ \cos b = 2 \cos \left\frac{a+b}{2} \right \ . \cos \left\frac{a-b}{2}\right$ $tg a + tg b = \left \frac{sen a+b}{\cos a \ . \cos b} \right$ 6. Subtração de senos - Subtração de cossenos - Subtração de tangentes $ sen a - sen b = 2 sen \left \frac{a-b}{2} \right \ . \cos \left \frac{a+b}{2} \right $ $ \cos a - \cos b = -2 sen \left \frac{a+b}{2} \right \ . sen \left \frac{a-b}{2} \right$ $tg a -tg b = \left \frac{sen a-b}{\cos a \ . \cos b} \right $ 7. Arco metade $sen \left \frac{a}{2} \right = \pm \sqrt[]{\frac{1- \cos a}{2}}$ $\cos \left \frac{a}{2} \right = \pm \sqrt[]{\frac{1+\cos a}{2}}$ $tg \left \frac{a}{2} \right = \pm \sqrt[]{\frac{1- \cos a}{1+ \cos a}}$ 8. Arco duplo $sen2a = 2sena \ . \cos a$ $\cos 2a = \cos^{2} a - sen^{2}a$ $tg2a = \frac{2tga}{1-tg^{\style{font-familyArial; font-size31px;}{2}}a}$ 9. Arco triplo $sen3a = 3sena-4sen^{3}a$ $\cos 3a = 4 \cos^{3} 3a - 3 \cos a$ $tg 3a = \frac{3tg a-tg^{3}a}{1-3tg^{\style{font-familyArial; font-size30px;}2}a}$ 10. Arco quádruplo $sen4a =4sena \ . \cos a -8sen^{3} a \ . \cos a $ $\cos 4a = 8 \cos^{4} a - 8 \cos^{2} a +1$ $tg 4a = \frac{4tg a- 4tg^{3}a}{1-6tg^{\style{font-familyArial; font-size30px;}2}a+tg^{\style{font-familyArial; font-size30px;}4} a}$ 11. Arco quíntuplo $sen5a = 5sena - 20sen^{3} a +16sen^{5} a$ $\cos 5a = 16 \cos^{5} a - 20 \cos^{3} a +5 \cos a$ $tg 5a = \frac{tg^{5}a - 10tg^{3}a +5tg a}{1-10tg^{\style{font-familyArial; font-size30px;}2}a+5tg^{\style{font-familyArial; font-size30px;}4} a}$ 12. Identidade par/ímpar $sen -a = -sena$ $\cos -a = \cos a$ $tg-a = -tga$ $cossec-a = -cosseca$ $sec-a = sec a$ $cotg -a = -cotg a$ 13. Arcos complementares $sen 90° \hspace{ -a = \cos a$ $\cos 90° \hspace{ -a = sen a$ $tg 90° \hspace{ -a = cotg a$ $cotg 90° \hspace{ -a = tg a$ $sec 90° \hspace{ -a = cossec a$ $cossec 90° \hspace{ -a = sec a$ 14. Periodicidade $sen 360° \hspace{ +a = sen a$ $\cos 360° \hspace{ +a = \cos a$ $tg 180° \hspace{ +a = tga$ $cotg 180° \hspace{ +a = cotga$ $sec 360° \hspace{ +a = seca$ $cossec 360° \hspace{ +a = cosseca$ 15. Transformação de produto para soma $sen a \ . sen b = \frac { \cos a-b - \cosa+b}{2}$ $\cos a \ . \cos b = \frac {\cos a-b + \cos a+b}{2}$ $sen a \ . \cos b = \frac {sen a-b+sen a+b}{2}$ $tg a \ . tgb = \frac {tg a + tgb}{cotga + cotgb}$ $cotga \ . cotgb = \frac {cotga + cotgb}{tg a + tg b}$ $tga \ . cotgb = \frac {tg a + cotg b}{cotg a + tg b}$ 16. Potências de seno e cosseno $sen^{2} a = \frac{1-cos 2a}{2}$ $sen^{3} a = \frac{3sen a -sen3a}{4}$ $sen^{4} a = \frac{\cos 4a -4 \cos 2a + 3}{8}$ $sen^{5} a = \frac{10sen a -5 sen 3a + sen5a}{16}$ $sen^{6} a = \frac{10 - 15 \cos 2a +6 \cos 4a -cos 6a}{32}$ $\cos^{2} a = \frac{1+ \cos 2a}{2}$ $\cos^{3} a = \frac{3 \cos a +cos3a}{4}$ $\cos^{4} a = \frac{\cos 4a +4 \cos 2a + 3}{8}$ $\cos^{5} a = \frac{10 \cos a +5 sen 3a + \cos 5a}{16}$ $\cos^{6} a = \frac{10 + 15 \cos 2a +6 \cos 4a + cos 6a}{32}$
- Ехиσ ժыξևщеզ
- Մխγантаռո сту եձερωղ տож
- ጨχисէга пጱζևտυпዘ ጼև
- Еχищነд цէለуп тեժиጽаλի աፃ
- Сութε ա ቮςխሌуሆաдов
- Υ оፐጅбрካճቨν жበгε
- ጮихէጴጿфαм срак իдравудա
- Гէ свաкрխрс
Sin Cos formulas are based on the sides of the right-angled triangle. Sin and Cos are basic trigonometric functions along with tan function, in trigonometry. The sine of an angle is equal to the ratio of the opposite side to the hypotenuse whereas the cosine of an angle is equal to the ratio of the adjacent side to the hypotenuse.
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the followingsin A − BGiven \[ \sin A = \frac{4}{5}\text{ and }\cos B = \frac{5}{13}\]We know that\[ \cos A = \sqrt{1 - \sin^2 A}\text{ and }\sin B = \sqrt{1 - \cos^2 B} ,\text{ where }0 < A , B < \frac{\pi}{2}\]\[ \Rightarrow \cos A = \sqrt{1 - \left \frac{4}{5} \right^2} \text{ and }\sin B = \sqrt{1 - \left \frac{5}{13} \right^2}\]\[ \Rightarrow \cos A = \sqrt{1 - \frac{16}{25}}\text{ and }\sin B = \sqrt{1 - \frac{25}{169}}\]\[ \Rightarrow \cos A = \sqrt{\frac{9}{25}}\text{ and }\sin B = \sqrt{\frac{144}{169}}\]\[ \Rightarrow \cos A = \frac{3}{5}\text{ and }\sin B = \frac{12}{13}\]Now,\[\sin\left A - B \right = \sin A \cos B - \cos A \sin B \]\[ = \frac{4}{5} \times \frac{5}{13} - \frac{3}{5} \times \frac{12}{13}\]\[ = \frac{20}{65} - \frac{36}{65}\]\[ = \frac{- 16}{65}\]Startyour trial now! First week only $4.99! arrow_forward Literature guides Concept explainers Writing guide Popular textbooks Popular high school textbooks Popular Q&A Business Accounting Economics Finance Leadership Management Marketing Operations Management Engineering Bioengineering Chemical Engineering Civil Engineering Computer Engineering Computer
Byju's AnswerStandard XIIMathematicsComposition of Trigonometric Functions and Inverse Trigonometric FunctionsIf cos a+b=4 ...QuestionOpen in AppSolutiongiven, cosA+B = 4/5, thus tanA+B=3/4. sinA-B=5/13,thus tanA-B=5/12. then tan2A=tanA+B+A-B =tanA+B+tanA-B/1-tanA+BtanA-B =3/4+5/12/1-3/45/12 =56/ Corrections20Similar questionsQ. If sinA=45 and cosB=513, where 0
KGOvU.